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APPROXIMATE LINEAR MAPPING OF

DERIVATION-TYPE ON BANACH ∗-ALGEBRA

Ick-Soon Chang

Abstract. We consider additive mappings similar to derivations
on Banach ∗-algebras and we will first study the conditions for
such additive mappings on Banach ∗-algebras. Then we prove some
theorems concerning approximate linear mappings of derivation-
type on Banach ∗-algebras. As an application, approximate linear
mappings of derivation-type on C∗-algebra are characterized.

1. Introduction

The stability problem for derivations on Banach algebra was con-
sidered by authors in [3, 14]. Bourgin proved the superstability of ho-
momorphism in [4]. In particular, Badora dealt with the stability of
Bourgin-type for derivations in [3].

The study of stability problem has originally been formulated by
Ulam [16] : under what condition does there exist a homomorphism near
an approximate homomorphism? Hyers [8] had answered affirmatively
the question of Ulam under the assumption that the groups are Banach
spaces. A generalized version of the theorem of Hyers for approximately
additive mappings was given by Aoki [1] and for approximately linear
mappings was presented by Rassias [15].

Since then, many interesting results of the stability problems to a
number of functional equations and inequalities (or involving deriva-
tions) have been investigated (refer [11] and [12]). The reader is referred
to the book [9] for many information of stability problem with a large
variety of applications.

On the other hand, many authors (see, for example, [5]) have studied
the additive mappings δ1, δ2 on ∗-rings R similar to derivations and
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Jordan derivations on ∗-rings. These mappings δ1, δ2 satisfy

δ1(xy) = xδ1(y) + δ1(x)y∗ for all x, y ∈ R
and

δ2(x
2) = xδ2(x) + δ2(x)x∗ for all x ∈ R.

The aim of this work is to establish some theorems for approximate
linear mappings of derivation-type on Banach ∗-algebra related to the
additive mappings mentioned in the above paragraph. Furthermore, the
division of this work is devoted to the applications for such approximate
linear mappings of derivation-type on C∗-algebra.

2. Main results

We first take into account the additive functional inequality which is
needed in this work.

Lemma 2.1. Let δ be a mapping from a vector space A to a normed
space B. Then it satisfies the inequality

‖δ(x)− δ(y)− 2δ(z)‖ ≤ ‖δ(x− y − 2z)‖(2.1)

for all x, y, z ∈ A if and only if it is an additive mapping.

Proof. Suppose that a mapping δ satisfies the inequality (2.1). Let-
ting x = y = z = 0 in (2.1), we get δ(0) = 0. And by replacing x, y and
z with x+ y, x− y and y, respectively, in (2.1), we obtain

δ(x+ y)− δ(x− y) = 2δ(y)(2.2)

for all x, y ∈ A. Also, by letting x+ y = u and x− y = v in (2.2), we get

δ(u)− δ(v) = 2δ
(u− v

2

)
(2.3)

for all u, v ∈ A. Replacing v by −u in (2.3), we have

δ(−u) = −δ(u)(2.4)

for all u ∈ A. Setting u = 2y and v = 0 in (2.3), we arrive at δ(2y) =
2δ(y). Setting y = x

2 in the last expression, we obtain δ(x2 ) = 1
2δ(x). So

the relation (2.3) can be written

δ(u)− δ(v) = δ(u− v)(2.5)

for all u, v ∈ A. Letting u = x and v = −y in (2.5) and using (2.4), we
yield that

δ(x+ y) = δ(x) + δ(y)
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for all x, y ∈ A, so that δ is additive.
Conversely, if δ is an additive mapping, then it is easily proved that

δ satisfies the inequality (2.1).

Now we assume that Tε = {eiθ : 0 ≤ θ ≤ ε}. For any elements x, y in
∗-algebra A, the symbol [x, y] will denote the commutator xy − yx and
let Sym(A) be the set of self-adjoint elements in A.

Theorem 2.2. Let A be a Banach ∗-algebra. Assume that mappings
Φ : A3 → [0,∞) and ϕ : A2 → [0,∞) satisfy the assumptions

1.
∑∞

j=0
1
2j

Φ(2jx, 2jy, 2jz) <∞ (x, y, z ∈ A),

2. limn→∞
1
2nϕ(2nx, y) = 0 (x, y ∈ A).

Suppose that δ : A → A is a mapping subject to

‖δ(tx)− tδ(y)− 2δ(z)‖ ≤ ‖δ(x− y − 2z)‖+ Φ(x, y, z)(2.6)

for all x, y, z ∈ A and all t ∈ Tε with

‖δ(xy)− xδ(y)− δ(x)y∗‖ ≤ ϕ(x, y)(2.7)

for all x ∈ Sym(A) and y ∈ A. Then there exists a unique linear mapping
L : A → A such that

L(xy) = xL(y) + L(x)y∗ for all x, y ∈ A(2.8)

and

(2.9) ‖L(x)− δ(x)‖ ≤ σ(x) for all x ∈ A,
where

σ(x) =
∞∑
j=0

[ 1

2j+1
Φ(2j+1x, 0, 2jx)

]
+ 2Φ(0, 0, 0).

In this case, the mapping L satisfies the identity

(2.10) L(x)[y, z] = 0

for all x, y, z ∈ A.

Proof. We first consider t = 1 in (2.6). Then we have

‖δ(x)− δ(y)− 2δ(z)‖ ≤ ‖δ(x− y − 2z)‖+ Φ(x, y, z)(2.11)

for all x, y, z ∈ A. By letting x = y = z = 0 in (2.11), we get ‖δ(0)‖ ≤
Φ(0, 0, 0). Setting x = x+ y, y = x− y and z = y in (2.11) yield

‖δ(x+ y)− δ(x− y)− 2δ(y)‖ ≤ Φ(x+ y, x− y, y) + Φ(0, 0, 0)(2.12)

for all x, y ∈ A. Putting y = x in (2.12) and dividing by 2, we arrive at

(2.13)
∥∥∥δ(x)− δ(2x)

2

∥∥∥ ≤ 1

2
Φ(2x, 0, x) + Φ(0, 0, 0)
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for all x ∈ A. Substituting 2nx for x in (2.13) and dividing by 2n, we
obtain∥∥∥δ(2nx)

2n
− δ(2n+1x)

2n+1

∥∥∥ ≤ 1

2n+1
Φ(2n+1x, 0, 2nx) +

1

2n
Φ(0, 0, 0),

which implies that

∥∥∥δ(2nx)

2n
− δ(2mx)

2m

∥∥∥ ≤ n−1∑
j=m

∥∥∥δ(2jx)

2j
− δ(2j+1x)

2j+1

∥∥∥
(2.14)

≤
n−1∑
j=m

[ 1

2j+1
Φ(2j+1x, 0, 2jx) +

1

2j
Φ(0, 0, 0)

]
for all x ∈ A and all nonnegative integers m,n with n > m. This means

that { δ(2
nx)
2n } is a Cauchy sequence. Hence the sequence { δ(2

nx)
2n } con-

verges. So one can define a mapping L : A → A by

L(x) = lim
n→∞

δ(2nx)

2n
(2.15)

for all x ∈ A. Letting m = 0 and n→∞ in (2.14), we arrive at (2.9).
Now we claim that the mapping L is linear. By (2.11), one notes that

‖L(x)− L(y)− 2L(z)‖ = lim
n→∞

1

2n
‖δ(2nx)− δ(2ny)− 2δ(2nz)‖

≤ lim
n→∞

1

2n
[ ‖δ(2n(x− y − 2z))‖+ Φ(2nx, 2ny, 2nz) ]

= ‖L(x− y − 2z)‖

for all x, y, z ∈ A. According to Lemma 2.1, the mapping L is additive.
Replacing x, y and z with x + y, x − y and y, respectively, in (2.6), we
have

(2.16) ‖δ(t(x+ y))− tδ(x− y)− 2δ(y)‖ ≤ Φ(x+ y, x− y, y) + Φ(0, 0, 0)

for all x, y ∈ A and all t ∈ Tε. Putting y = 0 in (2.16), we have

‖δ(tx)− tδ(x)‖ ≤ Φ(x, x, 0) + 3Φ(0, 0, 0),

for all x ∈ A and all t ∈ Tε, which gives that

‖L(tx)− tL(x)‖ = lim
n→∞

1

2n
‖δ(t · 2nx)− tδ(2nx)‖

≤ lim
n→∞

1

2n
[Φ(2nx, 2nx, 0) + 3Φ(0, 0, 0)] = 0.
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That is, we conclude that L(tx) = tL(x) for all x ∈ A and all t ∈ Tε.
On account of Lemma in [7], we know that L is a linear.

Next we show that L satisfies the equation (2.8). It is easy to show
that if x ∈ Sym(A), then 2nx ∈ Sym(A). We note from (2.7) that

‖L(xy)− xδ(y)− L(x)y∗‖ = lim
n→∞

1

2n
‖δ(2nxy)− 2nxδ(y)− δ(2nx)y∗‖

≤ lim
n→∞

1

2n
ϕ(2nx, y) = 0

for all x ∈ Sym(A) and y ∈ A. Thus we get

L(xy) = xδ(y) + L(x)y∗ for all x ∈ Sym(A) and y ∈ A.

Note that for elements x ∈ A, we can write x = x1 + ix2, where x1 :=
x+x∗

2 and x2 := x−x∗
2i are self-adjoint. Thus we see that

L(xy) = L((x1 + ix2)y) = L(x1y) + iL(x2y)

=
(
x1δ(y) + L(x1)y

∗)+ i
(
x2δ(y) + L(x2)y

∗)
= (x1 + ix2)δ(y) + L(x1 + ix2)y

∗

= xδ(y) + L(x)y∗

for all x, y ∈ A. The equation guarantees that

2nxδ(y) + 2nL(x)y∗ = 2nL(xy) = L(x · 2ny) = xδ(2ny) + 2nL(x)y∗

for all x, y ∈ A, which implies that xδ(y) = x δ(2
ny)

2n . So, by (2.15), we
have the identity (2.8).

To show uniqueness of L, let us assume that T : A → A is another
linear mapping satisfying (2.8) and (2.9). Then we have by (2.9)

‖L(x)− T (x)‖ = lim
n→∞

1

2n
‖L(2nx)− T (2nx)‖

≤ lim
n→∞

1

2n
[ ‖L(2nx)− δ(2nx)‖+ ‖δ(2nx)− T (2nx)‖ ]

≤ lim
n→∞

1

2n−1
σ(2nx) = 0

for all x ∈ A, which means that L = T.
On the other hand, in view of (2.8), observe that

xyL(z) + xL(y)z∗ + L(x)y∗z∗ = xyL(z) + L(xy)z∗

= L(xy · z) = L(x · yz)
= xL(yz) + L(x)(yz)∗

= xyL(z) + xL(y)z∗ + L(x)z∗y∗.
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This implies that L(x)[y∗, z∗] = 0 for all x, y, z ∈ A. Replacing y by y∗

and z by z∗ in the previous relation, we get the identity (2.10), which
completes the proof.

Theorem 2.3. Let A be a Banach ∗-algebra. Assume that mappings
Φ : A3 → [0,∞) and ϕ : A2 → [0,∞) satisfy the assumptions

1. ρ(x) =
∑∞

j=0 2jΦ
(
x
2j
, 0, x

2j+1

)
<∞ (x ∈ A),

2. limn→∞ 2nϕ
(
x
2n , y

)
= 0 (x, y ∈ A).

Suppose that δ : A → A is a mapping subject to the inequalities (2.6)
and (2.7). Then there exists a unique linear mapping L : A → A with
the identity (2.8) and

(2.17) ‖L(x)− δ(x)‖ ≤ ρ(x)

for all x ∈ A. In this case, the mapping L satisfies the relation (2.10).

Proof. Letting x = y = z = 0 in (2.11), we get ‖δ(0)‖ ≤ Φ(0, 0, 0).
By assumption of Φ, we should have Φ(0, 0, 0) = 0. Thus δ(0) = 0.
Replacing x, y and z with x+ y, x− y and y, respectively, in (2.11), we
arrive at

‖δ(x+ y)− δ(x− y)− 2δ(y)‖ ≤ Φ(x+ y, x− y, y)

for all x, y ∈ A. Letting x = u
2 , y = u

2 in the last expression, we get∥∥∥δ(u)− 2δ
(u

2

)∥∥∥ ≤ Φ
(
u, 0,

u

2

)
for all u ∈ A.

The remainder of the proof can be carried out similarly as the corre-
sponding part of Theorem 2.2.

3. Applications

In this section, we write the unit element by e.

Theorem 3.1. IfA is either a semiprime Banach ∗-algebra or a unital
Banach ∗-algebra in Theorem 2.2 (resp, Theorem 2.3 ), then δ is a linear
mapping with relations (2.8) and (2.10). In this case A is semiprime, δ
is a central mapping.

Proof. It follows by Theorem 2.2 (resp, Theorem 2.3) that there exists
a unique linear mapping L : A → A with properties (2.8) and (2.10).
In particular, considering the proof of Theorem 2.2 (resp, Theorem 2.3),
we see that x{δ(y)− L(y)} = 0 for all x, y ∈ A.

If A is unital, set x = e. Then δ = L.
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If A is nonunital, then δ(y)−L(y) lies in the right annihilator ran(A)
of A. If A is semiprime, then ran(A) = {0}, so that δ = L.

Furthermore, replacing y by yδ(x) in (2.10) and using it, we have

(3.1) δ(x)y[δ(x), z] = 0

for all x, y, z ∈ A. Letting y by zy in (3.1), we get δ(x)zy[δ(x), z] =
0. Left multiplication in (3.1) by z, we arrive at zδ(x)y[δ(x), z] = 0.
Combining the last two expressions, we obtain [δ(x), z]y[δ(x), z] = 0.
The semiprimeness of A implies that [δ(x), z] = 0 for all x, z ∈ A.
Therefore δ(x) ∈ Z(A) for all x ∈ A. This shows that δ maps A into its
center Z(A), which concludes the proof.

Corollary 3.2. If A is a C∗-algebra in Theorem 2.2 (resp, Theorem
2.3 ), then δ is a commuting linear mapping.

Proof. Since a C∗-algebra is semiprime [2], we have from Theorem
3.1 that the linear mapping δ satisfies the condition [δ(x), x] = 0 for all
x ∈ A. Thereby the proof is ended.

Theorem 3.3. If A is a noncommutative prime Banach ∗-algebra in
Theorem 2.2 (resp, Theorem 2.3 ), then δ is identically zero.

Proof. Note that a prime algebra is semiprime. According to Theo-
rem 3.1, δ is a linear mapping with relations (2.8) and (2.10).

Since (2.10) holds and A is noncommutative, choose z that does not
belong to the center of A. Then it follows from [5, Lemma 1] that δ is
identically zero, which ends the proof.

Theorem 3.4. If A is a semisimple Banach ∗-algebra in Theorem 2.2
(resp, Theorem 2.3 ), then δ is continuous linear mapping.

Proof. Observe that a semisimple algebra is semiprime. In view of
Theorem 3.1, we see that δ is a linear mapping with (2.8).

So the mapping δ satisfies the equation

δ(x2) = xδ(x) + δ(x)x∗ for all x ∈ A.(3.2)

Since A is a semisimple, we have by [6, Corollarly 2.3] that δ is contin-
uous, which completes the proof.

It is well known that any primitive C∗-algebra is prime [13]. Then the
previous theorem has the same result for a noncommutative primitive
C∗-algebra.

Now we denote by U(A) the set of all unitary elements in a unital
C∗-algebra A.
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Theorem 3.5. Let A be a unital C∗-algebra. Assume that mappings
Φ : A3 → [0,∞) and ϕ : A2 → [0,∞) satisfy the assumptions

1.
∑∞

j=0
1
2j

Φ(2jx, 2jy, 2jz) <∞ (x, y, z ∈ A),

2. limn→∞
1
2nϕ(x, 2ny) = 0 (x, y ∈ A).

Suppose that δ : A → A is a mapping subject to (2.6) with

‖δ(xy)− xδ(y)− δ(sx)y∗‖ ≤ ϕ(x, y)(3.3)

for all x ∈ U(A), y ∈ A and s ∈ R. Then there exists a unique linear
mapping L : A → A satisfying (2.8) and (2.9). Moreover, the mapping
L satisfies the identity (2.10).

Proof. As in the proof of Theorem 2.2, we obtain

L(xy) = xL(y) + δ(sx)y∗ for all x ∈ U(A), y ∈ A and s ∈ R.(3.4)

We set x = y = e in (3.4) and then δ(se) = 0 for all s ∈ R. In view of
(2.15), we see that L(e) = 0.

Considering s = 1 in (3.4), we have

L(xy) = xL(y) + δ(x)y∗ for all x ∈ U(A) and y ∈ A.(3.5)

Setting y = e in (3.5) yields L(x) = δ(x) for all x ∈ U(A). Since L
is linear and A is the linear span of its unitary elements [10], i.e., x =∑m

j=1 λjvj , where λj ∈ C and vj ∈ U(A), we have from (3.5)

L(xy) =
m∑
j=1

λjL(vjy) =
m∑
j=1

λj
(
vjL(y) + δ(vj)y

∗)
=

m∑
j=1

λjvj · L(y) +
m∑
j=1

λjL(vj)y
∗

= xL(y) + L
( m∑
j=1

λjvj

)
y∗ = xL(y) + L(x)y∗

for all x, y ∈ A. This completes the proof.

We also have the following conclusion by using the same approach as
in the proof of Theorem 3.5.

Theorem 3.6. Let A be a unital C∗-algebra. Assume that mappings
Φ : A3 → [0,∞) and ϕ : A2 → [0,∞) satisfy the assumptions

1. ρ(x) =
∑∞

j=0 2jΦ
(
x
2j
, 0, x

2j+1

)
<∞ (x ∈ A),

2. limn→∞ 2nϕ
(
x, y2n

)
= 0 (x, y ∈ A).
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Suppose that δ : A → A is a mapping subjected to the inequalities (2.6)
and (3.3). Then there exists a unique linear mapping L : A → A with
the identity (2.8) and the inequality (2.17). Moreover, the mapping L
satisfies the relation (2.10).

Here we suppose that S = {1, i}, where i ∈ C. The below theorems
hold for a noncommutative primitive unital C∗-algebra.

Theorem 3.7. Let A be a noncommutative prime unital Banach ∗-
algebra. Assume that mappings Φ : A3 → [0,∞) and ϕ : A2 → [0,∞)
satisfy the assumptions of Theorem 2.2. Suppose that δ : A → A is a
mapping subjected to

‖δ(tx)− tδ(y)− 2δ(z)‖ ≤ ‖δ(x− y − 2z)‖+ Φ(x, y, z)(3.6)

for all x, y, z ∈ A and t ∈ S with

‖δ(xy + yx)− xδ(y)− δ(x)y∗ − yδ(x)− δ(y)x∗‖ ≤ ϕ(x, y)(3.7)

for all x, y ∈ A. Then δ is a linear mapping with (3.2).

Proof. We first let t = 1 in (3.6). By applying the same method as
in the proof of Theorem 2.2, we find that there exists a unique additive
mapping L : A → A satisfying (2.9) and (2.15). Secondly, we take into
account t = i in (3.6). Employing the same fashion as in the proof of
Theorem 2.2, we see that L(ix) = iL(x) for all x ∈ A and i ∈ C.

Now we prove that δ satisfies the equation (3.2). We have by (3.7)
that

‖L(xy + yx)− xδ(y)− L(x)y∗ − yL(x)− δ(y)x∗‖

= lim
n→∞

1

2n
‖δ(2n(xy + yx))− 2nxδ(y)− δ(2nx)y∗ − yδ(2nx)

− 2nδ(y)x∗‖ ≤ lim
n→∞

1

2n
ϕ(2nx, y) = 0,

which means that

L(xy + yx) = xδ(y) + L(x)y∗ + yL(x) + δ(y)x∗ for all x, y ∈ A.(3.8)

This leads to

xδ(2ny) + 2nL(x)y∗ + 2nyL(x) + δ(2ny)x∗ = L(x · 2ny + 2ny · x)

= 2nL(xy + yx) = 2n(xδ(y) + L(x)y∗ + yL(x) + δ(y)x∗)

for all x, y ∈ A, which implies that

x
δ(2ny)

2n
+
δ(2ny)

2n
x∗ = xδ(y) + δ(y)x∗.
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It follows from (2.15) that

xL(y) + L(y)x∗ = xδ(y) + δ(y)x∗

for all x, y ∈ A. Setting x = e in the last expression, we get L = δ. So
the property (3.8) is as follows :

δ(xy + yx) = xδ(y) + δ(x)y∗ + yδ(x) + δ(y)x∗(3.9)

for all x, y ∈ A. Considering y = x in (3.9), we see that δ satisfies the
equation (3.2).

It remains to show that δ is a linear mapping. Now replacing y by se
in (3.9), we get

2δ(sx) = xδ(se) + 2sδ(x) + δ(se)x∗(3.10)

for all x ∈ A and s ∈ R. On the other hand, we note from [5, Theorem
2] that δ(se) = 0. So we have by (3.10) that δ(sx) = sδ(x) for all x ∈ A
and s ∈ R. In particular, we know that δ(ix) = iδ(x) for all x ∈ A and
i ∈ C. Hence we yield that

δ(λx) = δ((s1 + s2i)x) = s1δ(x) + s2iδ(x) = (s1 + s2i)δ(x) = λδ(x)

for all x ∈ A and all λ ∈ C. Thus δ is linear mapping and so the theorem
is proved.

As in the proof of Theorem 3.7, we arrive at the following.

Theorem 3.8. Let A be a noncommutative prime unital Banach ∗-
algebra. Assume that mappings Φ : A3 → [0,∞) and ϕ : A2 → [0,∞)
satisfy the assumptions of Theorem 2.3. Suppose that δ : A → A is a
mapping subject to the conditions (3.6) and (3.7). Then δ is a linear
mapping satisfying (3.2).
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[5] M. Breŝar and J. Vukman, On some additive mappings in rings with involution,

Aequationes Math. 38 (1989), 178–185.
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