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APPROXIMATE LINEAR MAPPING OF
DERIVATION-TYPE ON BANACH xALGEBRA

Ick-SoON CHANG

ABSTRACT. We consider additive mappings similar to derivations
on Banach *-algebras and we will first study the conditions for
such additive mappings on Banach *-algebras. Then we prove some
theorems concerning approximate linear mappings of derivation-
type on Banach *-algebras. As an application, approximate linear
mappings of derivation-type on C*-algebra are characterized.

1. Introduction

The stability problem for derivations on Banach algebra was con-
sidered by authors in [3, 14]. Bourgin proved the superstability of ho-
momorphism in [4]. In particular, Badora dealt with the stability of
Bourgin-type for derivations in [3].

The study of stability problem has originally been formulated by
Ulam [16] : under what condition does there exist a homomorphism near
an approzimate homomorphism? Hyers [8] had answered affirmatively
the question of Ulam under the assumption that the groups are Banach
spaces. A generalized version of the theorem of Hyers for approximately
additive mappings was given by Aoki [1] and for approximately linear
mappings was presented by Rassias [15].

Since then, many interesting results of the stability problems to a
number of functional equations and inequalities (or involving deriva-
tions) have been investigated (refer [11] and [12]). The reader is referred
to the book [9] for many information of stability problem with a large
variety of applications.

On the other hand, many authors (see, for example, [5]) have studied
the additive mappings 1, do on *-rings R similar to derivations and
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Jordan derivations on *-rings. These mappings d1, do satisfy
01 (zy) = 201(y) + 01 (x)y” for all z,y € R
and
5o(x?) = x03(x) + do(x)z* for all 2 € R.

The aim of this work is to establish some theorems for approximate
linear mappings of derivation-type on Banach x-algebra related to the
additive mappings mentioned in the above paragraph. Furthermore, the
division of this work is devoted to the applications for such approximate
linear mappings of derivation-type on C*-algebra.

2. Main results

We first take into account the additive functional inequality which is
needed in this work.

LEMMA 2.1. Let 6 be a mapping from a vector space A to a normed
space B. Then it satisfies the inequality

(2.1) [6(z) = d(y) —20(2) < |6(x —y — 22)||
for all x,y,z € A if and only if it is an additive mapping.

Proof. Suppose that a mapping ¢ satisfies the inequality (2.1). Let-
ting x =y =2z =01in (2.1), we get §(0) = 0. And by replacing x,y and
z with 4+ y,z — y and y, respectively, in (2.1), we obtain

(2.2) 6(x +y) —d(z —y) = 20(y)
for all z,y € A. Also, by letting x +y = u and x —y = v in (2.2), we get

(2.3) §(u) — 8(v) = 25(“ 3 “)

for all u,v € A. Replacing v by —u in (2.3), we have
(2.4) d(—u) = —d(u)

for all u € A. Setting v = 2y and v = 0 in (2.3), we arrive at §(2y) =
26(y). Setting y = £ in the last expression, we obtain §(%) = £6(z). So

the relation (2.3) can be written
(2.5) d(u) —d(v) = 6(u—wv)

for all u,v € A. Letting u = x and v = —y in (2.5) and using (2.4), we
yield that

6(z+y)=46(z) +d(y)
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for all x,y € A, so that § is additive.
Conversely, if ¢ is an additive mapping, then it is easily proved that
J satisfies the inequality (2.1). O

Now we assume that T. = {€® : 0 < § < ¢}. For any elements x,y in
x-algebra A, the symbol [z, y] will denote the commutator xy — yz and
let Sym(A) be the set of self-adjoint elements in A.

THEOREM 2.2. Let A be a Banach x-algebra. Assume that mappings
®: A% — [0,00) and ¢ : A% — [0, 00) satisfy the assumptions
L Y2, 5 (23, 20y,292) < oo (z,y,2 € A),
2. limy 00 5w 0(2"2,y) = 0 (z,y € A).
Suppose that § : A — A is a mapping subject to
(2.6) [6(tz) —t0(y) —20(2)[| < [|6(z —y — 22)| + ©(2,y, 2)
for all x,y,z € A and all t € T, with
(2.7) 16(zy) — x6(y) — 0(z)y"|| < ¢(=,y)

for allz € Sym(A) andy € A. Then there exists a unique linear mapping
L: A— A such that

(2.8) L(zy) = xL(y) + L(z)y* for all z,y € A
and
(2.9) |L(z) —d(z)]| <o(x) forall x € A,
where

>© 1 . .

o)=Y [ch(zf“x,o, 2J:c)] +28(0,0,0).

§=0
In this case, the mapping L satisfies the identity
(2.10) @)y, =0

for all z,y,z € A.
Proof. We first consider ¢t = 1 in (2.6). Then we have
(2.11) 16(2) = 0(y) = 20(2)[| < [|6(z —y = 22)|[ + (2, 2)

for all z,y,z € A. By letting v =y = z = 0 in (2.11), we get [|0(0)] <
®(0,0,0). Setting z =x 4y, y=x —y and z =y in (2.11) yield

(212) [I6(z+y) —o(z —y) —20(y)l| < ®(z +y, 2 — y,y) + 2(0,0,0)
for all z,y € A. Putting y = x in (2.12) and dividing by 2, we arrive at

(2.13) Hé(x) - ‘S(ix)H < %@(2@0,@ +®(0,0,0)
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for all x € A. Substituting 2"z for x in (2.13) and dividing by 2", we
obtain
§(2"x)  6(2"tia) 1
— <
H on on+1 ‘ — on+l

1
®(2" 1z, 0,2"x) + 27<1>(0, 0,0),
which implies that
(2.14)

252 - 22 < ZH 5 -

on 2J+1

1
j+1 ¥ -
< Z [wlcp (2712,0,20 ) + 2j<1>(0,0,0)]
for all z € A and all nonnegative integers m,n with n > m. ThlS means
that {=5 e x)} is a Cauchy sequence. Hence the sequence { =57~ 5(2"z) } con-
verges. So one can define a mapping £ : A — A by
52"
(2.15) L) = lim 220

n—oo 2N

for all x € A. Letting m = 0 and n — oo in (2.14), we arrive at (2.9).
Now we claim that the mapping £ is linear. By (2.11), one notes that

L) ~ £(3) ~ 2L ()] = Tim ~[[6(2") — 5(2"y) — 25(2")|

< lim (82w — y - 22))] + B(2"0, 27, 2"2)

= Hﬁ(l‘ —y—22)]

for all z,y,z € A. According to Lemma 2.1, the mapping £ is additive.
Replacing z,y and z with = 4+ y,z — y and y, respectively, in (2.6), we
have

(2.16) [8(t(x + 1)) — 15z — ) — 20()]| < B + 9,2~ y,) + $(0,0,0)
for all z,y € A and all t € T.. Putting y = 0 in (2.16), we have
[6(tz) — té(z)|| < ®(z,,0) +32(0,0,0),
for all z € A and all ¢t € T, which gives that
1
|IL(tx) — tL(x)| = li_>m 2—n||6(t <2"x) — t6(2"x)||

1
< lim —[®(2"z, 2"z, 0) + 3®(0,0,0)] = 0.

~ n—oo 2™
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That is, we conclude that L(tz) = tL(x) for all x € A and all t € T..
On account of Lemma in [7], we know that £ is a linear.

Next we show that £ satisfies the equation (2.8). It is easy to show
that if z € Sym(A), then 2"z € Sym(A). We note from (2.7) that

£ (ey) — 6(y) — L7l = Tim_ (2" wy) — 2"w5(y) — 6(2"2)y"|

1
< lim —¢(2"z,y) =0

n—oo 2N
for all z € Sym(A) and y € A. Thus we get
L(zy) = 20(y) + L(x)y* for all x € Sym(A) and y € A.
Note that for elements x € A, we can write x = x1 + ixy, where z1 :=
“‘w and z9 := zgf* are self-adjoint. Thus we see that
L(zy) = L((21 + iw2)y) = L(21y) + iL(72Y)
= (210(y) + L(z1)y") +i(220(y) + L(22)y")
= (z1 +ix2)0(y) + L(x1 + ix2)y”
= z0(y) + L(x)y"
for all z,y € A. The equation guarantees that
2"x(y) + 2" L(x)y* = 2"L(zy) = L(x - 2"y) = 26(2"y) + 2" L(z)y*

for all z,y € A, which implies that z6(y) = = (2n Y So, by (2.15), wi
have the identity (2.8).

To show uniqueness of L, let us assume that 7' : A — A is another
linear mapping satisfying (2.8) and (2.9). Then we have by (2.9)

[1£(z) = T(x)[ = lim iHE(Q”:L“) —T(2")]

< lim L [£@2") - 8(2")| + 3(2"x) — T(2"0)]]
< lim o(2"z) =0

— noo0 201
for all x € A, which means that £ =T.
On the other hand, in view of (2.8), observe that
ayLl(z) + xL(y)z" + L(x)y" 2" = ayL(z) + L(zy)z"
=L(zy-2) = L(z-yz)
= zL(yz) + L(z)(yz)"
=azyLl(z) +xL(y)z" + L(z)z"y*
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This implies that L£(z)[y*, 2*] = 0 for all z,y, z € A. Replacing y by y*
and z by z* in the previous relation, we get the identity (2.10), which
completes the proof. O

THEOREM 2.3. Let A be a Banach x-algebra. Assume that mappings
®: A% = [0,00) and ¢ : A% — [0, 00) satisfy the assumptions

L ple) = Y20 20(£.0, 727) < oo (x € A),

2. limp 00 270 (&, y) =0 (z,y € A).
Suppose that 6 : A — A is a mapping subject to the inequalities (2.6)

and (2.7). Then there exists a unique linear mapping L : A — A with
the identity (2.8) and

(2.17) [1£(x) = 6(x)|| < p(x)

for all x € A. In this case, the mapping L satisfies the relation (2.10).
Proof. Letting = y = z = 0 in (2.11), we get [[6(0)]] < @(0,0,0).
By assumption of ®, we should have ®(0,0,0) = 0. Thus 6(0) = 0.

Replacing z,y and z with « + y,xz — y and y, respectively, in (2.11), we
arrive at

[6(z +y) —d(x —y) —=20(y)|| < Y(x +y,z —y,y)

for all #,y € A. Letting x = 5,y = § in the last expression, we get

o —28(3) [ < 2(w0.5)

for all u € A.
The remainder of the proof can be carried out similarly as the corre-
sponding part of Theorem 2.2. O

3. Applications

In this section, we write the unit element by e.

THEOREM 3.1. If A is either a semiprime Banach x-algebra or a unital
Banach x-algebra in Theorem 2.2 (resp, Theorem 2.3), then § is a linear
mapping with relations (2.8) and (2.10). In this case A is semiprime, §
is a central mapping.

Proof. Tt follows by Theorem 2.2 (resp, Theorem 2.3) that there exists
a unique linear mapping £ : A — A with properties (2.8) and (2.10).
In particular, considering the proof of Theorem 2.2 (resp, Theorem 2.3),
we see that x{0(y) — L(y)} =0 for all z,y € A.

If A is unital, set x = e. Then § = L.
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If A is nonunital, then §(y) — L(y) lies in the right annihilator ran(.A)
of A. If A is semiprime, then ran(A) = {0}, so that 6 = L.
Furthermore, replacing y by yd(x) in (2.10) and using it, we have

(3.1) S(z)ylo(x), 2] =0

for all z,y,z € A. Letting y by zy in (3.1), we get d(z)zy[d(x), z] =
0. Left multiplication in (3.1) by z, we arrive at zd(z)y[d(x), 2]

Combining the last two expressions, we obtain [§(x), z]y[d(x), z]
The semiprimeness of A implies that [6(x),z] = 0 for all z,z € A.
Therefore §(x) € Z(A) for all x € A. This shows that 6 maps A into its
center Z(A), which concludes the proof. O

=0
=0

COROLLARY 3.2. If A is a C*-algebra in Theorem 2.2 (resp, Theorem
2.3), then § is a commuting linear mapping.

Proof. Since a C*-algebra is semiprime [2], we have from Theorem
3.1 that the linear mapping 0 satisfies the condition [0(x),x] = 0 for all
x € A. Thereby the proof is ended. O

THEOREM 3.3. If A is a noncommutative prime Banach *-algebra in
Theorem 2.2 (resp, Theorem 2.3 ), then 0 is identically zero.

Proof. Note that a prime algebra is semiprime. According to Theo-
rem 3.1, ¢ is a linear mapping with relations (2.8) and (2.10).

Since (2.10) holds and A is noncommutative, choose z that does not
belong to the center of A. Then it follows from [5, Lemma 1] that § is
identically zero, which ends the proof. O

THEOREM 3.4. If A is a semisimple Banach x-algebra in Theorem 2.2
(resp, Theorem 2.3 ), then ¢ is continuous linear mapping.

Proof. Observe that a semisimple algebra is semiprime. In view of
Theorem 3.1, we see that J is a linear mapping with (2.8).
So the mapping ¢ satisfies the equation

(3.2) 6(2?) = xd(z) + 0(x)z* for all z € A.
Since A is a semisimple, we have by [6, Corollarly 2.3] that § is contin-
uous, which completes the proof. O

It is well known that any primitive C*-algebra is prime [13]. Then the
previous theorem has the same result for a noncommutative primitive
C*-algebra.

Now we denote by U(A) the set of all unitary elements in a unital
C*-algebra A.
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THEOREM 3.5. Let A be a unital C*-algebra. Assume that mappings
®: A% = [0,00) and ¢ : A% — [0, 00) satisfy the assumptions

L2 057 @202, 27y,212) < o0 (x,y,2 € A),

2. limy, o0 5 0(7,2"y) = 0 (x,y € A).
Suppose that ¢ : A — A is a mapping subject to (2.6) with
(3:3) [6(zy) — x6(y) — o(s2)y™[| < @(z,y)

for all x € U(A),y € A and s € R. Then there exists a unique linear
mapping L : A — A satisfying (2.8) and (2.9). Moreover, the mapping
L satisfies the identity (2.10).

Proof. As in the proof of Theorem 2.2, we obtain
(3.4) L(xy) =zL(y) + é(sx)y” for all z € U(A), y € A and s € R.

We set x = y = e in (3.4) and then d(se) = 0 for all s € R. In view of
(2.15), we see that L(e) = 0.
Considering s = 1 in (3.4), we have

(3.5) L(zy) = xL(y) + 0(x)y* for all x € U(A) and y € A.

Setting y = e in (3.5) yields L(z) = d6(x) for all z € U(A). Since L
is linear and A is the linear span of its unitary elements [10], i.e., x =
> i1 Ajuj, where \; € C and v; € U(.A), we have from (3.5)

Z)\ L(vjy) = )\ i (v L(y) + 6(vj)y*)

Jj=1

= Z Ajuj - £ Z
j=1 j=1

= acy) + £( 30 A ) = 2Lw) + Ly’
j=1

for all 2,y € A. This completes the proof. ]

We also have the following conclusion by using the same approach as
in the proof of Theorem 3.5.

THEOREM 3.6. Let A be a unital C*-algebra. Assume that mappings
®: A% = [0,00) and ¢ : A% — [0, 00) satisfy the assumptions

L p(z) =322, 20(%,0,557) <o (z €A,
2. limp 00 2" (2, 4% ) =0 (z,y € A).
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Suppose that § : A — A is a mapping subjected to the inequalities (2.6)
and (3.3). Then there exists a unique linear mapping L : A — A with
the identity (2.8) and the inequality (2.17). Moreover, the mapping L
satisfies the relation (2.10).

Here we suppose that S = {1,i}, where ¢ € C. The below theorems
hold for a noncommutative primitive unital C*-algebra.

THEOREM 3.7. Let A be a noncommutative prime unital Banach *-
algebra. Assume that mappings ® : A*> — [0,00) and ¢ : A% — [0, 00)
satisfy the assumptions of Theorem 2.2. Suppose that § : A — A is a
mapping subjected to
(3.6) [6(tz) —t0(y) —20(2)[| < [|6(z —y — 22) + (2, y, 2)
for all z,y,z € A and t € S with
37 0wy +yz) — 26(y) —0(x)y” —yd(z) — d(y)a™|| < ¢(z,y)
for all x,y € A. Then ¢ is a linear mapping with (3.2).

Proof. We first let ¢ = 1 in (3.6). By applying the same method as
in the proof of Theorem 2.2, we find that there exists a unique additive
mapping £ : A — A satisfying (2.9) and (2.15). Secondly, we take into
account ¢ = i in (3.6). Employing the same fashion as in the proof of
Theorem 2.2, we see that L(ix) = iL(z) for all z € A and i € C.

Now we prove that § satisfies the equation (3.2). We have by (3.7)
that

1£(zy + ya) = 26(y) — L{z)y" — yL(x) = (y)="|

1
= lim (|82 (wy + ya)) — 2"wd(y) — 6(2")y" — yo(2"x)

n—oo

which means that
(3.8) L(xy+yx) =x6(y) + L(x)y* +yL(x) + d(y)x™ for all z,y € A.
This leads to
xd(2"y) + 2" L(z)y* + 2"yL(x) + 0(2"y)z* = L(z - 2"y + 2"y - x)
= 2"L(zy +yr) = 2"(xd(y) + L(2)y" + yL(z) + d(y)x")
for all z,y € A, which implies that

o(2m o(2"
x (2ny) + (2ny):c* =zd(y) + d(y)z*.
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It follows from (2.15) that
2L(y) + L(y)z" = xd(y) + 6(y)z”

for all z,y € A. Setting x = e in the last expression, we get £ = 4. So
the property (3.8) is as follows:

(3.9) d(zy +yx) = 20(y) + 6(x)y* + yd(x) + 6(y)z*

for all 2,y € A. Considering y = x in (3.9), we see that J satisfies the
equation (3.2).

It remains to show that ¢ is a linear mapping. Now replacing y by se
in (3.9), we get

(3.10) 26(sx) = xd(se) + 2s0(x) + d(se)x”

for all z € A and s € R. On the other hand, we note from [5, Theorem
2] that d(se) = 0. So we have by (3.10) that d(sz) = sd(z) for all z € A
and s € R. In particular, we know that d(ixz) = id(z) for all z € A and
1 € C. Hence we yield that

d(Az) = d((s1 + s21)x) = 510(2) + s2i0(x) = (51 + s21)0(x) = Ad(x)

for all x € A and all A € C. Thus § is linear mapping and so the theorem
is proved. O

As in the proof of Theorem 3.7, we arrive at the following.

THEOREM 3.8. Let A be a noncommutative prime unital Banach x-
algebra. Assume that mappings ® : A3 — [0,00) and ¢ : A% — [0, 00)
satisfy the assumptions of Theorem 2.3. Suppose that § : A — A is a
mapping subject to the conditions (3.6) and (3.7). Then ¢ is a linear
mapping satisfying (3.2).
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